A uniform Berry－Esseen theorem on M－estimators for geometrically ergodic Markov chains

Valentin Patilea

IRMAR－INSA \＆CREST－ENSAI，Rennes，France
en collaboration avec
Loïc Hervé \＆James Ledoux，IRMAR－INSA，Rennes

The problem (1/2)

- Let $\left\{X_{n}\right\}_{n \geq 0}$ be a V-geometrically ergodic Markov chain with $V(\cdot) \geq 1$ some fixed unbounded real-valued function.

The problem (1/2)

- Let $\left\{X_{n}\right\}_{n \geq 0}$ be a V-geometrically ergodic Markov chain with $V(\cdot) \geq 1$ some fixed unbounded real-valued function.
- Consider

$$
M_{n}(\alpha)=n^{-1} \sum_{k=1}^{n} F\left(\alpha, X_{k-1}, X_{k}\right)
$$

$\alpha \in \mathcal{A} \subset \mathbb{R}$ with $F(\cdot, \cdot, \cdot)$ real-valued functional and \mathcal{A} some open interval.

The problem (1/2)

- Let $\left\{X_{n}\right\}_{n \geq 0}$ be a V-geometrically ergodic Markov chain with $V(\cdot) \geq 1$ some fixed unbounded real-valued function.
- Consider

$$
M_{n}(\alpha)=n^{-1} \sum_{k=1}^{n} F\left(\alpha, X_{k-1}, X_{k}\right)
$$

$\alpha \in \mathcal{A} \subset \mathbb{R}$ with $F(\cdot, \cdot, \cdot)$ real-valued functional and \mathcal{A} some open interval.

- Define the M-estimator $\widehat{\alpha}_{n}$ such that

$$
M_{n}\left(\widehat{\alpha}_{n}\right) \leq \inf _{\alpha \in \mathcal{A}} M_{n}(\alpha)+c_{n}
$$

with $c_{n}, n \geq 1$ some sequence of real numbers decreasing to zero.

The problem (1/2)

- Let $\left\{X_{n}\right\}_{n \geq 0}$ be a V-geometrically ergodic Markov chain with $V(\cdot) \geq 1$ some fixed unbounded real-valued function.
- Consider

$$
M_{n}(\alpha)=n^{-1} \sum_{k=1}^{n} F\left(\alpha, X_{k-1}, X_{k}\right)
$$

$\alpha \in \mathcal{A} \subset \mathbb{R}$ with $F(\cdot, \cdot, \cdot)$ real-valued functional and \mathcal{A} some open interval.

- Define the M-estimator $\widehat{\alpha}_{n}$ such that

$$
M_{n}\left(\widehat{\alpha}_{n}\right) \leq \inf _{\alpha \in \mathcal{A}} M_{n}(\alpha)+c_{n}
$$

with $c_{n}, n \geq 1$ some sequence of real numbers decreasing to zero.

- Let $\alpha_{0} \in \mathcal{A}$ be the "true" value of the parameter of interest.

The problem (2/2)

- Suppose that

$$
\left(\left|\frac{\partial F}{\partial \alpha}(\alpha, x, y)\right|+\left|\frac{\partial^{2} F}{\partial \alpha^{2}}(\alpha, x, y)\right|\right)^{3+\varepsilon} \leq C(V(x)+V(y))
$$

for some constants $\varepsilon>0$ and $C>0$.

The problem (2/2)

- Suppose that

$$
\left(\left|\frac{\partial F}{\partial \alpha}(\alpha, x, y)\right|+\left|\frac{\partial^{2} F}{\partial \alpha^{2}}(\alpha, x, y)\right|\right)^{3+\varepsilon} \leq C(V(x)+V(y))
$$

for some constants $\varepsilon>0$ and $C>0$.

- Aim: show that the estimator $\widehat{\alpha}_{n}$ satisfies a Berry-Esseen theorem uniformly with respect to the underlying probability distribution of the Markov chain.

Example: AR(1) with ARCH(1) errors

- Consider the the observations are generated by the process

$$
X_{n}=\rho_{0} X_{n-1}+\sigma\left(X_{n-1} ; \zeta_{0}, \gamma_{0}\right) \varepsilon_{n}, \quad n=1,2, \ldots
$$

Example: AR(1) with ARCH(1) errors

- Consider the the observations are generated by the process

$$
X_{n}=\rho_{0} X_{n-1}+\sigma\left(X_{n-1} ; \zeta_{0}, \gamma_{0}\right) \varepsilon_{n}, \quad n=1,2, \ldots
$$

- $X_{0}=0, \sigma^{2}(x ; \zeta, \gamma)=\zeta+\gamma x^{2}$;
- $\left\{\varepsilon_{n}\right\}_{n \geq 1}$ are i.i.d. zero mean of variance equal to 1 , with finite p th order moment, $p>0$ and (unknown) continuous density $f_{\varepsilon}>0$;
- $\left|\rho_{0}\right|<1$ and $\zeta_{0}, \gamma_{0}>0$ are the true values of the parameters.

Example: AR(1) with $\mathrm{ARCH}(1)$ errors

- Consider the the observations are generated by the process

$$
X_{n}=\rho_{0} X_{n-1}+\sigma\left(X_{n-1} ; \zeta_{0}, \gamma_{0}\right) \varepsilon_{n}, \quad n=1,2, \ldots
$$

- $X_{0}=0, \sigma^{2}(x ; \zeta, \gamma)=\zeta+\gamma x^{2}$;
- $\left\{\varepsilon_{n}\right\}_{n \geq 1}$ are i.i.d. zero mean of variance equal to 1 , with finite p th order moment, $p>0$ and (unknown) continuous density $f_{\varepsilon}>0$;
- $\left|\rho_{0}\right|<1$ and $\zeta_{0}, \gamma_{0}>0$ are the true values of the parameters.
- The "true" parameter is $\theta=\left(\rho_{0}, \zeta_{0}, \gamma_{0}\right) \in \Theta \subset[-\bar{\rho}, \bar{\rho}] \times\left[m_{\zeta}, M_{\zeta}\right] \times\left[m_{\gamma}, M_{\gamma}\right] \subset \mathbb{R}^{3}$, where

Example: AR(1) with ARCH(1) errors

- Consider the the observations are generated by the process

$$
X_{n}=\rho_{0} X_{n-1}+\sigma\left(X_{n-1} ; \zeta_{0}, \gamma_{0}\right) \varepsilon_{n}, \quad n=1,2, \ldots
$$

- $X_{0}=0, \sigma^{2}(x ; \zeta, \gamma)=\zeta+\gamma x^{2}$;
- $\left\{\varepsilon_{n}\right\}_{n \geq 1}$ are i.i.d. zero mean of variance equal to 1 , with finite p th order moment, $p>0$ and (unknown) continuous density $f_{\varepsilon}>0$;
- $\left|\rho_{0}\right|<1$ and $\zeta_{0}, \gamma_{0}>0$ are the true values of the parameters.
- The "true" parameter is $\theta=\left(\rho_{0}, \zeta_{0}, \gamma_{0}\right) \in \Theta \subset[-\bar{\rho}, \bar{\rho}] \times\left[m_{\zeta}, M_{\zeta}\right] \times\left[m_{\gamma}, M_{\gamma}\right] \subset \mathbb{R}^{3}$, where
- $\bar{\rho} \in(0,1)$ is given;
- $0<m_{\zeta}<M_{\zeta}<\infty$ and $0<m_{\gamma}<M_{\gamma}<1$ are given such that $\bar{\rho}+\sqrt{M_{\gamma}}<1$.

Example: AR(1) with ARCH(1) errors

- Consider the the observations are generated by the process

$$
X_{n}=\rho_{0} X_{n-1}+\sigma\left(X_{n-1} ; \zeta_{0}, \gamma_{0}\right) \varepsilon_{n}, \quad n=1,2, \ldots
$$

- $X_{0}=0, \sigma^{2}(x ; \zeta, \gamma)=\zeta+\gamma x^{2}$;
- $\left\{\varepsilon_{n}\right\}_{n \geq 1}$ are i.i.d. zero mean of variance equal to 1 , with finite p th order moment, $p>0$ and (unknown) continuous density $f_{\varepsilon}>0$;
- $\left|\rho_{0}\right|<1$ and $\zeta_{0}, \gamma_{0}>0$ are the true values of the parameters.
- The "true" parameter is $\theta=\left(\rho_{0}, \zeta_{0}, \gamma_{0}\right) \in \Theta \subset[-\bar{\rho}, \bar{\rho}] \times\left[m_{\zeta}, M_{\zeta}\right] \times\left[m_{\gamma}, M_{\gamma}\right] \subset \mathbb{R}^{3}$, where
- $\bar{\rho} \in(0,1)$ is given;
- $0<m_{\zeta}<M_{\zeta}<\infty$ and $0<m_{\gamma}<M_{\gamma}<1$ are given such that $\bar{\rho}+\sqrt{M_{\gamma}}<1$.
- We are interested to estimate ρ_{0} and γ_{0} and to derive BE bounds.

Example cont'd

- To estimate ρ_{0} one can use the least squares estimator

$$
\widehat{\rho}_{n}=\frac{\sum_{k=1}^{n} X_{k} X_{k-1}}{\sum_{k=1}^{n} X_{k-1}^{2}}=\arg \min _{\rho} \frac{1}{n} \sum_{k=1}^{n} F\left(\rho, X_{k-1}, X_{k}\right)
$$

where $F\left(\rho, X_{k-1}, X_{k}\right)=\left(X_{k}-\rho X_{k-1}\right)^{2}$.

Example cont'd

- To estimate ρ_{0} one can use the least squares estimator

$$
\widehat{\rho}_{n}=\frac{\sum_{k=1}^{n} X_{k} X_{k-1}}{\sum_{k=1}^{n} X_{k-1}^{2}}=\arg \min _{\rho} \frac{1}{n} \sum_{k=1}^{n} F\left(\rho, X_{k-1}, X_{k}\right)
$$

where $F\left(\rho, X_{k-1}, X_{k}\right)=\left(X_{k}-\rho X_{k-1}\right)^{2}$.

- The parameter γ_{0} can also be estimated by a suitable least squares approach.

Agenda of the talk

(1) Introduction

Agenda of the talk

(1) Introduction
(2) A general method for deriving Berry-Esseen bounds for M-estimators

Agenda of the talk

(9) Introduction
(2) A general method for deriving Berry-Esseen bounds for M-estimators
(3) A uniform Berry-Esseen statement with geometrically ergodic Markov chains

Agenda of the talk

(9) Introduction
(2) A general method for deriving Berry-Esseen bounds for M-estimators
(3) A uniform Berry-Esseen statement with geometrically ergodic Markov chains

4 Application: Berry-Esseen bound for M-estimators with geometrically Markov chains

Agenda of the talk

(9) Introduction
(2) A general method for deriving Berry-Esseen bounds for M-estimators
(3) A uniform Berry-Esseen statement with geometrically ergodic Markov chains
4. Application: Berry-Esseen bound for M-estimators with geometrically Markov chains
(5) Example of application: $\mathrm{AR}(1)$ with $\mathrm{ARCH}(1)$ errors
(1) Introduction
(2) A general method for deriving Berry-Esseen bounds for M-estimators
(3) A uniform Berry-Esseen statement with geometrically ergodic Markov chains

4 Application: Berry-Esseen bound for M-estimators with geometrically Markov chains
(5) Example of application: AR(1) with ARCH(1) errors

Definitions, notation (1/2)

- Let E be a measurable space equipped with a countably generated σ-field \mathcal{E}

Definitions, notation (1/2)

- Let E be a measurable space equipped with a countably generated σ-field \mathcal{E}
- Let $\left\{X_{n}\right\}_{n \geq 0}$ be a Markov chain with state space E and transition kernels $\left\{\mathcal{Q}_{\theta}(x, \cdot): x \in E\right\}$ where θ is a parameter in some general set Θ.

Definitions, notation (1/2)

- Let E be a measurable space equipped with a countably generated σ-field \mathcal{E}
- Let $\left\{X_{n}\right\}_{n \geq 0}$ be a Markov chain with state space E and transition kernels $\left\{\bar{Q}_{\theta}(x, \cdot): x \in E\right\}$ where θ is a parameter in some general set Θ.
- Let μ be the initial distribution of the chain. It can be fixed or dependent on θ.

Definitions, notation (1/2)

- Let E be a measurable space equipped with a countably generated σ-field \mathcal{E}
- Let $\left\{X_{n}\right\}_{n \geq 0}$ be a Markov chain with state space E and transition kernels $\left\{\bar{Q}_{\theta}(x, \cdot): x \in E\right\}$ where θ is a parameter in some general set Θ.
- Let μ be the initial distribution of the chain. It can be fixed or dependent on θ.
- Let $\mathbb{P}_{\theta, \mu}$ be the probability distribution of $\left\{X_{n}\right\}_{n \geq 0}$ and $\mathbb{E}_{\theta, \mu}$ be the expectation w.r.t. $\mathbb{P}_{\theta, \mu}$.

Definitions, notation (2/2)

- For all θ, let

$$
M_{\theta}(\alpha)=\lim _{n \rightarrow \infty} \mathbb{E}_{\theta, \mu}\left[M_{n}(\alpha)\right] .
$$

Assume that there exists a unique "true" value $\alpha_{0}=\alpha_{0}(\theta)$ of the parameter of interest, that is

$$
M_{\theta}\left(\alpha_{0}\right)<M_{\theta}(\alpha), \quad \forall \alpha \neq \alpha_{0} .
$$

Definitions, notation (2/2)

- For all θ, let

$$
M_{\theta}(\alpha)=\lim _{n \rightarrow \infty} \mathbb{E}_{\theta, \mu}\left[M_{n}(\alpha)\right] .
$$

Assume that there exists a unique "true" value $\alpha_{0}=\alpha_{0}(\theta)$ of the parameter of interest, that is

$$
M_{\theta}\left(\alpha_{0}\right)<M_{\theta}(\alpha), \quad \forall \alpha \neq \alpha_{0} .
$$

- We want to prove

$$
\sup _{\theta \in \Theta} \sup _{u \in \mathbb{R}}\left|\mathbb{P}_{\theta, \mu}\left\{\frac{\sqrt{n}}{\tau(\theta)}\left(\widehat{\alpha}_{n}-\alpha_{0}\right) \leq u\right\}-\Gamma(u)\right|=O\left(n^{-1 / 2}\right)
$$

where

Definitions, notation (2/2)

- For all θ, let

$$
M_{\theta}(\alpha)=\lim _{n \rightarrow \infty} \mathbb{E}_{\theta, \mu}\left[M_{n}(\alpha)\right] .
$$

Assume that there exists a unique "true" value $\alpha_{0}=\alpha_{0}(\theta)$ of the parameter of interest, that is

$$
M_{\theta}\left(\alpha_{0}\right)<M_{\theta}(\alpha), \quad \forall \alpha \neq \alpha_{0}
$$

- We want to prove

$$
\sup _{\theta \in \Theta} \sup _{u \in \mathbb{R}}\left|\mathbb{P}_{\theta, \mu}\left\{\frac{\sqrt{n}}{\tau(\theta)}\left(\widehat{\alpha}_{n}-\alpha_{0}\right) \leq u\right\}-\Gamma(u)\right|=O\left(n^{-1 / 2}\right)
$$

where

- 「(.) denotes the $N(0,1)$ d.f.
- $\tau(\theta)$ is some suitable positive real number.

Related work

- IID framework and functional $F\left(\alpha, X_{k}\right)$:
- Pfanzagl (1971): $\left\{X_{n}\right\}_{n \geq 0}$ a sequence of i.i.d. random variables and with functionals of the form $F\left(\alpha, X_{k}\right)$.
- Bentkus, Bloznelis \& Götze (1997): obtain the result of Pfanzagl (with constants) using convexity arguments that allow for non differentiable functionals $\alpha \mapsto F\left(\alpha, X_{k}\right)$

Related work

- IID framework and functional $F\left(\alpha, X_{k}\right)$:
- Pfanzagl (1971): $\left\{X_{n}\right\}_{n \geq 0}$ a sequence of i.i.d. random variables and with functionals of the form $F\left(\alpha, X_{k}\right)$.
- Bentkus, Bloznelis \& Götze (1997): obtain the result of Pfanzagl (with constants) using convexity arguments that allow for non differentiable functionals $\alpha \mapsto F\left(\alpha, X_{k}\right)$
- Markov framework and functional $F\left(\alpha, X_{k}, X_{k-1}\right)$:
- Rao (1973): extends the framework of Pfanzagl to $\left\{X_{n}\right\}_{n \geq 0}$ a uniformly ergodic Markov chain
- Milhaud \& Raugi (1989): ML in linear autoregressive models under strong conditions on the error term law. Moreover, they obtain a suboptimal rate $n^{-1 / 2} \ln ^{1 / 2} n$.

(1) Introduction

(2) A general method for deriving Berry-Esseen bounds for M-estimators
(3) A uniform Berry-Esseen statement with geometrically ergodic Markov chains
4. Application: Berry-Esseen bound for M-estimators with geometrically Markov chains
(5) Example of application: $\mathrm{AR}(1)$ with $\mathrm{ARCH}(1)$ errors

General method for deriving BE bounds for M-estimators

Pfanzagl's method revisited

- Consider a statistical model $\left(\Omega, \mathcal{F},\left\{\mathbb{P}_{\theta}, \theta \in \Theta\right\}\right)$, where Θ denotes some parameter space

General method for deriving BE bounds for M-estimators

Pfanzagl's method revisited

- Consider a statistical model $\left(\Omega, \mathcal{F},\left\{\mathbb{P}_{\theta}, \theta \in \Theta\right\}\right)$, where Θ denotes some parameter space
- Let $\left\{X_{n}\right\}_{n \geq 0}$ be any sequence of observations (not necessarily markovian). Let \mathbb{E}_{θ} denote the expectation with respect to \mathbb{P}_{θ}.

General method for deriving BE bounds for M-estimators

Pfanzagl's method revisited

- Consider a statistical model $\left(\Omega, \mathcal{F},\left\{\mathbb{P}_{\theta}, \theta \in \Theta\right\}\right)$, where Θ denotes some parameter space
- Let $\left\{X_{n}\right\}_{n \geq 0}$ be any sequence of observations (not necessarily markovian). Let \mathbb{E}_{θ} denote the expectation with respect to \mathbb{P}_{θ}.
- For each n, let $M_{n}(\alpha)$ be a measurable function depending on $X_{0}, X_{1}, \ldots, X_{n}$ and the parameter of interest $\alpha \in \mathcal{A} \subset \mathbb{R}$ with \mathcal{A} some open interval.

Pfanzagl's method revisited

- Consider a statistical model $\left(\Omega, \mathcal{F},\left\{\mathbb{P}_{\theta}, \theta \in \Theta\right\}\right)$, where Θ denotes some parameter space
- Let $\left\{X_{n}\right\}_{n \geq 0}$ be any sequence of observations (not necessarily markovian). Let \mathbb{E}_{θ} denote the expectation with respect to \mathbb{P}_{θ}.
- For each n, let $M_{n}(\alpha)$ be a measurable function depending on $X_{0}, X_{1}, \ldots, X_{n}$ and the parameter of interest $\alpha \in \mathcal{A} \subset \mathbb{R}$ with \mathcal{A} some open interval.
- Let $c_{n} \downarrow 0$

Pfanzagl's method revisited

- Consider a statistical model $\left(\Omega, \mathcal{F},\left\{\mathbb{P}_{\theta}, \theta \in \Theta\right\}\right)$, where Θ denotes some parameter space
- Let $\left\{X_{n}\right\}_{n \geq 0}$ be any sequence of observations (not necessarily markovian). Let \mathbb{E}_{θ} denote the expectation with respect to \mathbb{P}_{θ}.
- For each n, let $M_{n}(\alpha)$ be a measurable function depending on $X_{0}, X_{1}, \ldots, X_{n}$ and the parameter of interest $\alpha \in \mathcal{A} \subset \mathbb{R}$ with \mathcal{A} some open interval.
- Let $c_{n} \downarrow 0$
- M-estimator: a measurable function $\widehat{\alpha}_{n}$ of the observations $\left(X_{0}, \ldots, X_{n}\right)$ such that

$$
M_{n}\left(\widehat{\alpha}_{n}\right) \leq \min _{\alpha \in \mathcal{A}} M_{n}(\alpha)+c_{n}
$$

Pfanzagl's method revisited: Assumptions (1/3)

$\forall n \geq 1$ and $\alpha, \alpha^{\prime} \in \mathcal{A}$, there exist $M_{n}^{\prime}(\alpha), M_{n}^{\prime \prime}(\alpha)$ measurable functions depending on $X_{0}, X_{1}, \ldots, X_{n}$ and on α such that:

Pfanzagl's method revisited: Assumptions (1/3)

$\forall n \geq 1$ and $\alpha, \alpha^{\prime} \in \mathcal{A}$, there exist $M_{n}^{\prime}(\alpha), M_{n}^{\prime \prime}(\alpha)$ measurable functions depending on $X_{0}, X_{1}, \ldots, X_{n}$ and on α such that:
(A1) $\forall \theta \in \Theta$, there exists a unique $\alpha_{0}=\alpha_{0}(\theta) \in \mathcal{A}$ such that $M_{\theta}^{\prime}\left(\alpha_{0}\right)=0$ where $M_{\theta}^{\prime}(\alpha)=\lim _{n \rightarrow \infty} \mathbb{E}_{\theta}\left[M_{n}^{\prime}(\alpha)\right]$.

Pfanzagl's method revisited: Assumptions (1/3)

$\forall n \geq 1$ and $\alpha, \alpha^{\prime} \in \mathcal{A}$, there exist $M_{n}^{\prime}(\alpha), M_{n}^{\prime \prime}(\alpha)$ measurable functions depending on $X_{0}, X_{1}, \ldots, X_{n}$ and on α such that:
(A1) $\forall \theta \in \Theta$, there exists a unique $\alpha_{0}=\alpha_{0}(\theta) \in \mathcal{A}$ such that $M_{\theta}^{\prime}\left(\alpha_{0}\right)=0$ where $M_{\theta}^{\prime}(\alpha)=\lim _{n \rightarrow \infty} \mathbb{E}_{\theta}\left[M_{n}^{\prime}(\alpha)\right]$.
(A2) $0<\inf _{\theta} m(\theta) \leq \sup _{\theta} m(\theta)<\infty$ where $m(\theta)=\lim _{n \rightarrow \infty} \mathbb{E}_{\theta}\left[M_{n}^{\prime \prime}\left(\alpha_{0}\right)\right]$.

Pfanzagl's method revisited: Assumptions (1/3)

$\forall n \geq 1$ and $\alpha, \alpha^{\prime} \in \mathcal{A}$, there exist $M_{n}^{\prime}(\alpha), M_{n}^{\prime \prime}(\alpha)$ measurable functions depending on $X_{0}, X_{1}, \ldots, X_{n}$ and on α such that:
(A1) $\forall \theta \in \Theta$, there exists a unique $\alpha_{0}=\alpha_{0}(\theta) \in \mathcal{A}$ such that $M_{\theta}^{\prime}\left(\alpha_{0}\right)=0$ where $M_{\theta}^{\prime}(\alpha)=\lim _{n \rightarrow \infty} \mathbb{E}_{\theta}\left[M_{n}^{\prime}(\alpha)\right]$.
(A2) $0<\inf _{\theta} m(\theta) \leq \sup _{\theta} m(\theta)<\infty$ where $m(\theta)=\lim _{n \rightarrow \infty} \mathbb{E}_{\theta}\left[M_{n}^{\prime \prime}\left(\alpha_{0}\right)\right]$.
(A3) $\forall n \geq 1, \exists r_{n}>0$ independent of θ such that $\sqrt{n} r_{n} \rightarrow 0$ and

$$
\sup _{\theta \in \Theta} \mathbb{P}_{\theta}\left(\left|M_{n}^{\prime}\left(\widehat{\alpha}_{n}\right)\right| \geq r_{n}\right)=O\left(n^{-1 / 2}\right)
$$

Pfanzagl's method revisited: Assumptions (1/3)

$\forall n \geq 1$ and $\alpha, \alpha^{\prime} \in \mathcal{A}$, there exist $M_{n}^{\prime}(\alpha), M_{n}^{\prime \prime}(\alpha)$ measurable functions depending on $X_{0}, X_{1}, \ldots, X_{n}$ and on α such that:
(A1) $\forall \theta \in \Theta$, there exists a unique $\alpha_{0}=\alpha_{0}(\theta) \in \mathcal{A}$ such that $M_{\theta}^{\prime}\left(\alpha_{0}\right)=0$ where $M_{\theta}^{\prime}(\alpha)=\lim _{n \rightarrow \infty} \mathbb{E}_{\theta}\left[M_{n}^{\prime}(\alpha)\right]$.
(A2) $0<\inf _{\theta} m(\theta) \leq \sup _{\theta} m(\theta)<\infty$ where $m(\theta)=\lim _{n \rightarrow \infty} \mathbb{E}_{\theta}\left[M_{n}^{\prime \prime}\left(\alpha_{0}\right)\right]$.
(A3) $\forall n \geq 1, \exists r_{n}>0$ independent of θ such that $\sqrt{n} r_{n} \rightarrow 0$ and

$$
\sup _{\theta \in \Theta} \mathbb{P}_{\theta}\left(\left|M_{n}^{\prime}\left(\widehat{\alpha}_{n}\right)\right| \geq r_{n}\right)=O\left(n^{-1 / 2}\right)
$$

(A4) for $j=1,2, \exists \sigma_{j}(\cdot)$ such that $0<\inf _{\theta} \sigma_{j}(\theta) \leq \sup _{\theta} \sigma_{j}(\theta)<\infty$, and some constant $B>0$ and integer P_{0} such that for all $n \geq P_{0}$

$$
\begin{gathered}
\sup _{\theta \in \Theta} \sup _{u \in \mathbb{R}}\left|\mathbb{P}_{\theta}\left\{\frac{\sqrt{n}}{\sigma_{1}(\theta)} M_{n}^{\prime}\left(\alpha_{0}\right) \leq u\right\}-\Gamma(u)\right| \leq \frac{B}{\sqrt{n}} \\
\sup _{\theta \in \Theta} \sup _{u \in \mathbb{R}}\left|\mathbb{P}_{\theta}\left\{\frac{\sqrt{n}}{\sigma_{2}(\theta)}\left(M_{n}^{\prime \prime}\left(\alpha_{0}\right)-m(\theta)\right) \leq u\right\}-\Gamma(u)\right| \leq \frac{B}{\sqrt{n}} .
\end{gathered}
$$

Pfanzagl's method revisited: Assumptions (2/3)

(A4') for $n \geq P_{0},|u| \leq 2 \sqrt{\ln n}$, and $\theta \in \Theta, \exists \sigma_{n, u}^{2}(\theta)>0$ such that, with some constants $A^{\prime}, B^{\prime}>0$ which do not depend on such n, u, θ,

$$
\left|\sigma_{n, u}(\theta)-\sigma_{1}(\theta)\right| \leq A^{\prime}|u| n^{-1 / 2},
$$

$$
\left|\mathbb{P}_{\theta}\left\{\frac{\sqrt{n}}{\sigma_{n, u}(\theta)}\left(M_{n}^{\prime}\left(\alpha_{0}\right)+\frac{u \sigma_{1}(\theta)}{\sqrt{n} m(\theta)}\left(M_{n}^{\prime \prime}\left(\alpha_{0}\right)-m(\theta)\right)\right) \leq u\right\}-\Gamma(u)\right| \leq \frac{B^{\prime}}{\sqrt{n}} .
$$

Pfanzagl's method revisited: Assumptions (2/3)

(A4') for $n \geq P_{0},|u| \leq 2 \sqrt{\ln n}$, and $\theta \in \Theta, \exists \sigma_{n, u}^{2}(\theta)>0$ such that, with some constants $A^{\prime}, B^{\prime}>0$ which do not depend on such n, u, θ,

$$
\left|\sigma_{n, u}(\theta)-\sigma_{1}(\theta)\right| \leq A^{\prime}|u| n^{-1 / 2},
$$

$\left|\mathbb{P}_{\theta}\left\{\frac{\sqrt{n}}{\sigma_{n, u}(\theta)}\left(M_{n}^{\prime}\left(\alpha_{0}\right)+\frac{u \sigma_{1}(\theta)}{\sqrt{n} m(\theta)}\left(M_{n}^{\prime \prime}\left(\alpha_{0}\right)-m(\theta)\right)\right) \leq u\right\}-\Gamma(u)\right| \leq \frac{B^{\prime}}{\sqrt{n}}$.
(A5) For any $\alpha, \alpha^{\prime} \in \mathcal{A}$, let $R_{n}\left(\alpha, \alpha^{\prime}\right)$ be defined by the equation

$$
M_{n}^{\prime}\left(\alpha^{\prime}\right)=M_{n}^{\prime}(\alpha)+\left[M_{n}^{\prime \prime}(\alpha)+R_{n}\left(\alpha, \alpha^{\prime}\right)\right]\left(\alpha^{\prime}-\alpha\right) .
$$

For each n there exist $\omega_{n} \geq 0$ independent of θ and a real-valued measurable function W_{n} depending on $X_{0}, X_{1}, \ldots, X_{n}$ but independent of θ such that $\omega_{n} \rightarrow 0$ and $\forall\left(\alpha, \alpha^{\prime}\right) \in \mathcal{A}^{2}$,

$$
\left|R_{n}\left(\alpha, \alpha^{\prime}\right)\right| \leq\left\{\left|\alpha-\alpha^{\prime}\right|+\omega_{n}\right\} W_{n},
$$

and there exists a constant $c_{W}>0$ such that

$$
\sup _{\theta \in \Theta} \mathbb{P}_{\theta}\left\{c_{W} \leq W_{n}\right\}=O\left(n^{-1 / 2}\right)
$$

Pfanzagl's method revisited: Assumptions (3/3)

(A6) Assume that $\widehat{\alpha}_{n}$ is uniformly consistent at some rate, that is there exists a sequence $\gamma_{n} \rightarrow 0$ such that

$$
\sup _{\theta \in \Theta} \mathbb{P}_{\theta}\left\{\left|\widehat{\alpha}_{n}-\alpha_{0}\right| \geq d\right\} \leq \gamma_{n},
$$

where $d=\inf _{\theta \in \Theta} m(\theta) / 8 c_{W}$ with c_{W} and $m(\theta)$ defined in (A5) and (A2) respectively.

Pfanzagl's method revisited: Assumptions (3/3)

(A6) Assume that $\widehat{\alpha}_{n}$ is uniformly consistent at some rate, that is there exists a sequence $\gamma_{n} \rightarrow 0$ such that

$$
\sup _{\theta \in \Theta} \mathbb{P}_{\theta}\left\{\left|\widehat{\alpha}_{n}-\alpha_{0}\right| \geq d\right\} \leq \gamma_{n},
$$

where $d=\inf _{\theta \in \Theta} m(\theta) / 8 c_{W}$ with c_{W} and $m(\theta)$ defined in (A5) and (A2) respectively.

- Comments:

General method for deriving BE bounds for M-estimators

Pfanzagl's method revisited: Assumptions (3/3)

(A6) Assume that $\widehat{\alpha}_{n}$ is uniformly consistent at some rate, that is there exists a sequence $\gamma_{n} \rightarrow 0$ such that

$$
\sup _{\theta \in \Theta} \mathbb{P}_{\theta}\left\{\left|\widehat{\alpha}_{n}-\alpha_{0}\right| \geq d\right\} \leq \gamma_{n},
$$

where $d=\inf _{\theta \in \Theta} m(\theta) / 8 c_{W}$ with c_{W} and $m(\theta)$ defined in (A5) and (A2) respectively.

- Comments:
- The expectations $\mathbb{E}_{\theta}\left[M_{n}^{\prime}(\alpha)\right]$ and $\mathbb{E}_{\theta}\left[M_{n}^{\prime \prime}\left(\alpha_{0}\right)\right]$ may depend on n.

General method for deriving BE bounds for M-estimators

Pfanzagl's method revisited: Assumptions (3/3)

(A6) Assume that $\widehat{\alpha}_{n}$ is uniformly consistent at some rate, that is there exists a sequence $\gamma_{n} \rightarrow 0$ such that

$$
\sup _{\theta \in \Theta} \mathbb{P}_{\theta}\left\{\left|\widehat{\alpha}_{n}-\alpha_{0}\right| \geq d\right\} \leq \gamma_{n}
$$

where $d=\inf _{\theta \in \Theta} m(\theta) / 8 c_{W}$ with c_{W} and $m(\theta)$ defined in (A5) and (A2) respectively.

- Comments:
- The expectations $\mathbb{E}_{\theta}\left[M_{n}^{\prime}(\alpha)\right]$ and $\mathbb{E}_{\theta}\left[M_{n}^{\prime \prime}\left(\alpha_{0}\right)\right]$ may depend on n.
- Assumption (A3) ensures that the estimator (approximately) satisfies a kind of first order condition.

General method for deriving BE bounds for M-estimators

Pfanzagl's method revisited: Assumptions (3/3)

(A6) Assume that $\widehat{\alpha}_{n}$ is uniformly consistent at some rate, that is there exists a sequence $\gamma_{n} \rightarrow 0$ such that

$$
\sup _{\theta \in \Theta} \mathbb{P}_{\theta}\left\{\left|\widehat{\alpha}_{n}-\alpha_{0}\right| \geq d\right\} \leq \gamma_{n}
$$

where $d=\inf _{\theta \in \Theta} m(\theta) / 8 c_{W}$ with c_{W} and $m(\theta)$ defined in (A5) and (A2) respectively.

- Comments:
- The expectations $\mathbb{E}_{\theta}\left[M_{n}^{\prime}(\alpha)\right]$ and $\mathbb{E}_{\theta}\left[M_{n}^{\prime \prime}\left(\alpha_{0}\right)\right]$ may depend on n.
- Assumption (A3) ensures that the estimator (approximately) satisfies a kind of first order condition.
- The Assumptions (A4) and (A4') are the Berry-Esseen bounds for $M_{n}^{\prime}\left(\alpha_{0}\right), M_{n}^{\prime \prime}\left(\alpha_{0}\right)$, and for some of their linear combinations.

Pfanzagl's method revisited: Assumptions (3/3)

(A6) Assume that $\widehat{\alpha}_{n}$ is uniformly consistent at some rate, that is there exists a sequence $\gamma_{n} \rightarrow 0$ such that

$$
\sup _{\theta \in \Theta} \mathbb{P}_{\theta}\left\{\left|\widehat{\alpha}_{n}-\alpha_{0}\right| \geq d\right\} \leq \gamma_{n}
$$

where $d=\inf _{\theta \in \Theta} m(\theta) / 8 c_{W}$ with c_{W} and $m(\theta)$ defined in (A5) and (A2) respectively.

- Comments:
- The expectations $\mathbb{E}_{\theta}\left[M_{n}^{\prime}(\alpha)\right]$ and $\mathbb{E}_{\theta}\left[M_{n}^{\prime \prime}\left(\alpha_{0}\right)\right]$ may depend on n.
- Assumption (A3) ensures that the estimator (approximately) satisfies a kind of first order condition.
- The Assumptions (A4) and (A4') are the Berry-Esseen bounds for $M_{n}^{\prime}\left(\alpha_{0}\right), M_{n}^{\prime \prime}\left(\alpha_{0}\right)$, and for some of their linear combinations.
- The identity defining $R_{n}\left(\alpha, \alpha^{\prime}\right)$ in Assumption (A5) is guaranteed by Taylor expansion when the criterion $M_{n}(\alpha)$ is twice differentiable with respect to α.

Theorem

Under the conditions (A1-A6), $\exists C>0$ such that $\forall n \geq 1$,
$\sup _{\theta \in \Theta} \sup _{u \in \mathbb{R}}\left|\mathbb{P}_{\theta}\left\{\frac{\sqrt{n}}{\tau(\theta)}\left(\widehat{\alpha}_{n}-\alpha_{0}\right) \leq u\right\}-\Gamma(u)\right| \leq C\left(\frac{1}{\sqrt{n}}+\sqrt{n} r_{n}+\omega_{n}+\gamma_{n}\right)$ with $\tau(\theta):=\sigma_{1}(\theta) / m(\theta)$.

Theorem

Under the conditions (A1-A6), $\exists C>0$ such that $\forall n \geq 1$,
$\sup _{\theta \in \Theta} \sup _{u \in \mathbb{R}}\left|\mathbb{P}_{\theta}\left\{\frac{\sqrt{n}}{\tau(\theta)}\left(\widehat{\alpha}_{n}-\alpha_{0}\right) \leq u\right\}-\Gamma(u)\right| \leq C\left(\frac{1}{\sqrt{n}}+\sqrt{n} r_{n}+\omega_{n}+\gamma_{n}\right)$ with $\tau(\theta):=\sigma_{1}(\theta) / m(\theta)$.

Comments:

- To derive the Berry-Esseen bound of classical order $O\left(n^{-1 / 2}\right)$, we need $\gamma_{n}=O\left(n^{-1 / 2}\right), r_{n}=O\left(n^{-1}\right)$ and $\omega_{n}=O\left(n^{-1 / 2}\right)$.
- Usually c_{n} in the definition of the M-estimator has to decrease at the rate $n^{-3 / 2}$.

Introduction

(3)
A general method for deriving Berry-Esseen bounds for M-estimators
(3) A uniform Berry-Esseen statement with geometrically ergodic Markov chains
4. Application: Berry-Esseen bound for M-estimators with geometrically Markov chains
(5) Example of application: $\mathrm{AR}(1)$ with $\mathrm{ARCH}(1)$ errors

- Consider
- E a measurable space with a countably generated σ-field \mathcal{E}
- Θ some general parameter space.
- $\left\{X_{n}\right\}_{n \geq 0}$ a Markov chain with state space E, transition kernels $\left\{Q_{\theta}(x, \cdot), x \in E\right\}, \theta \in \Theta$, and initial distribution μ.
- μ is either given (e.g. Dirac measure) or depends on θ. Suppose $\mu(V)<\infty$ or $\sup _{\theta \in \Theta} \mu(V)<\infty$.
- Consider
- E a measurable space with a countably generated σ-field \mathcal{E}
- Θ some general parameter space.
- $\left\{X_{n}\right\}_{n \geq 0}$ a Markov chain with state space E, transition kernels $\left\{Q_{\theta}(x, \cdot), x \in E\right\}, \theta \in \Theta$, and initial distribution μ.
- μ is either given (e.g. Dirac measure) or depends on θ. Suppose $\mu(V)<\infty$ or $\sup _{\theta \in \Theta} \mu(V)<\infty$.
- Assumption (M). $\forall \theta \in \Theta$, there exists a Q_{θ}-invariant probability distribution π_{θ} and an unbounded $V: E \rightarrow[1, \infty)$ such that
- Consider
- E a measurable space with a countably generated σ-field \mathcal{E}
- Θ some general parameter space.
- $\left\{X_{n}\right\}_{n \geq 0}$ a Markov chain with state space E, transition kernels $\left\{Q_{\theta}(x, \cdot), x \in E\right\}, \theta \in \Theta$, and initial distribution μ.
- μ is either given (e.g. Dirac measure) or depends on θ. Suppose $\mu(V)<\infty$ or $\sup _{\theta \in \Theta} \mu(V)<\infty$.
- Assumption (\mathcal{M}). $\forall \theta \in \Theta$, there exists a Q_{θ}-invariant probability distribution π_{θ} and an unbounded $V: E \rightarrow[1, \infty)$ such that
$\left(\right.$ VG1) $\sup _{\theta \in \Theta} \pi_{\theta}(V)<\infty$
(VG2) For all $\gamma \in(0,1]$, there exist real numbers $\kappa_{\gamma}<1$ and $C_{\gamma} \geq 0$ such that we have, for each $\theta \in \Theta$ and for all $n \geq 1$ and $x \in E$

$$
\sup _{|f| \leq V^{\gamma}}\left|Q_{\theta}^{n} f(x)-\pi_{\theta}(f)\right| \leq C_{\gamma} \kappa_{\gamma}^{n} V(x)^{\gamma}
$$

- Consider
- E a measurable space with a countably generated σ-field \mathcal{E}
- Θ some general parameter space.
- $\left\{X_{n}\right\}_{n \geq 0}$ a Markov chain with state space E, transition kernels $\left\{Q_{\theta}(x, \cdot), x \in E\right\}, \theta \in \Theta$, and initial distribution μ.
- μ is either given (e.g. Dirac measure) or depends on θ. Suppose $\mu(V)<\infty$ or $\sup _{\theta \in \Theta} \mu(V)<\infty$.
- Assumption (\mathcal{M}). $\forall \theta \in \Theta$, there exists a Q_{θ}-invariant probability distribution π_{θ} and an unbounded $V: E \rightarrow[1, \infty)$ such that
$\left(\right.$ VG1) $\sup _{\theta \in \Theta} \pi_{\theta}(V)<\infty$
(VG2) For all $\gamma \in(0,1]$, there exist real numbers $\kappa_{\gamma}<1$ and $C_{\gamma} \geq 0$ such that we have, for each $\theta \in \Theta$ and for all $n \geq 1$ and $x \in E$

$$
\sup _{|f| \leq V^{\gamma}}\left|Q_{\theta}^{n} f(x)-\pi_{\theta}(f)\right| \leq C_{\gamma} \kappa_{\gamma}^{n} V(x)^{\gamma}
$$

- Remarks:
- (VG1)-(VG2) $\Rightarrow \forall \gamma \in(0,1], \forall \theta \in \Theta, Q_{\theta}$ is V^{γ}-geometrically ergodic.
- The constants C_{γ} and κ_{γ} do not depend on θ.
- Let $\alpha_{0}=\alpha_{0}(\theta) \in \mathcal{A} \subset \mathbb{R}$ be the parameter of interest
- Let $\alpha_{0}=\alpha_{0}(\theta) \in \mathcal{A} \subset \mathbb{R}$ be the parameter of interest
- Let $\xi(\alpha, \boldsymbol{x}, \boldsymbol{y})$ such that $\mathbb{E}_{\theta, \pi_{\theta}}\left[\xi\left(\alpha_{0}, X_{0}, X_{1}\right)\right]=0$
- Let $\alpha_{0}=\alpha_{0}(\theta) \in \mathcal{A} \subset \mathbb{R}$ be the parameter of interest
- Let $\xi(\alpha, x, y)$ such that $\mathbb{E}_{\theta, \pi_{\theta}}\left[\xi\left(\alpha_{0}, X_{0}, X_{1}\right)\right]=0$
- Let $S_{n}(\alpha)=\sum_{k=1}^{n} \xi\left(\alpha, X_{k-1}, X_{k}\right)$
- Let $\alpha_{0}=\alpha_{0}(\theta) \in \mathcal{A} \subset \mathbb{R}$ be the parameter of interest
- Let $\xi(\alpha, \boldsymbol{x}, \boldsymbol{y})$ such that $\mathbb{E}_{\theta, \pi_{\theta}}\left[\xi\left(\alpha_{0}, X_{0}, X_{1}\right)\right]=0$
- Let $S_{n}(\alpha)=\sum_{k=1}^{n} \xi\left(\alpha, X_{k-1}, X_{k}\right)$
- We need to investigate the uniform Berry-Esseen property

$$
\sup _{\theta \in \Theta} \sup _{u \in \mathbb{R}}\left|\mathbb{P}_{\theta, \mu}\left\{\frac{S_{n}\left(\alpha_{0}\right)}{\sigma(\theta) \sqrt{n}} \leq u\right\}-\Gamma(u)\right|=O\left(n^{-1 / 2}\right)
$$

where $\sigma^{2}(\theta)$ is the asymptotic variance

- Let $\alpha_{0}=\alpha_{0}(\theta) \in \mathcal{A} \subset \mathbb{R}$ be the parameter of interest
- Let $\xi(\alpha, \boldsymbol{x}, \boldsymbol{y})$ such that $\mathbb{E}_{\theta, \pi_{\theta}}\left[\xi\left(\alpha_{0}, X_{0}, X_{1}\right)\right]=0$
- Let $S_{n}(\alpha)=\sum_{k=1}^{n} \xi\left(\alpha, X_{k-1}, X_{k}\right)$
- We need to investigate the uniform Berry-Esseen property

$$
\sup _{\theta \in \Theta} \sup _{u \in \mathbb{R}}\left|\mathbb{P}_{\theta, \mu}\left\{\frac{S_{n}\left(\alpha_{0}\right)}{\sigma(\theta) \sqrt{n}} \leq u\right\}-\Gamma(u)\right|=O\left(n^{-1 / 2}\right)
$$

where $\sigma^{2}(\theta)$ is the asymptotic variance

- The following condition will be required for $m_{0}=1,2$ or 3 :
\exists constants $m>m_{0} \geq 1$ and $C_{\xi}>0$ such that
$\forall \alpha \in \mathcal{A}, \forall(x, y) \in E^{2}, \quad|\xi(\alpha, x, y)|^{m} \leq C_{\xi}(V(x)+V(y))$.
- Let $\alpha_{0}=\alpha_{0}(\theta) \in \mathcal{A} \subset \mathbb{R}$ be the parameter of interest
- Let $\xi(\alpha, \boldsymbol{x}, \boldsymbol{y})$ such that $\mathbb{E}_{\theta, \pi_{\theta}}\left[\xi\left(\alpha_{0}, X_{0}, X_{1}\right)\right]=0$
- Let $S_{n}(\alpha)=\sum_{k=1}^{n} \xi\left(\alpha, X_{k-1}, X_{k}\right)$
- We need to investigate the uniform Berry-Esseen property

$$
\sup _{\theta \in \Theta} \sup _{u \in \mathbb{R}}\left|\mathbb{P}_{\theta, \mu}\left\{\frac{S_{n}\left(\alpha_{0}\right)}{\sigma(\theta) \sqrt{n}} \leq u\right\}-\Gamma(u)\right|=O\left(n^{-1 / 2}\right)
$$

where $\sigma^{2}(\theta)$ is the asymptotic variance

- The following condition will be required for $m_{0}=1,2$ or 3 :
\exists constants $m>m_{0} \geq 1$ and $C_{\xi}>0$ such that
$\forall \alpha \in \mathcal{A}, \forall(x, y) \in E^{2},|\xi(\alpha, x, y)|^{m} \leq C_{\xi}(V(x)+V(y))$.
- Condition $\left(D_{m_{0}}\right)$ implies

$$
\begin{equation*}
\mathbb{E}_{\theta, \pi_{\theta}}\left[\left|\xi\left(\alpha, X_{0}, X_{1}\right)\right|^{m}\right]<\infty \tag{1}
\end{equation*}
$$

Lemma

If ξ is centered and satisfies condition $\left(D_{m_{0}}\right)$ with $m_{0} \in \mathbb{N}^{*}$, then there exists $\beta>0$ such that $\forall \theta \in \Theta, \forall n \geq 1, \forall t \in[-\beta, \beta]$,

$$
\mathbb{E}_{\theta, \mu}\left[e^{i t S_{n}\left(\alpha_{0}\right)}\right]=\lambda_{\theta}(t)^{n}\left[1+L_{\theta}(t)\right]+r_{\theta, n}(t)
$$

- $\lambda_{\theta}(\cdot), L_{\theta}(\cdot)$ and $r_{\theta, n}(\cdot)$ are $\mathcal{C}^{m_{0}}([-\beta, \beta], \mathbb{C})$ functions
- $\lambda_{\theta}(0)=1, \lambda_{\theta}^{\prime}(0)=0, L_{\theta}(0)=0$ and $r_{\theta, n}(0)=0$.

Lemma

If ξ is centered and satisfies condition $\left(D_{m_{0}}\right)$ with $m_{0} \in \mathbb{N}^{*}$, then there exists $\beta>0$ such that $\forall \theta \in \Theta, \forall n \geq 1, \forall t \in[-\beta, \beta]$,

$$
\mathbb{E}_{\theta, \mu}\left[e^{i t S_{n}\left(\alpha_{0}\right)}\right]=\lambda_{\theta}(t)^{n}\left[1+L_{\theta}(t)\right]+r_{\theta, n}(t)
$$

- $\lambda_{\theta}(\cdot), L_{\theta}(\cdot)$ and $r_{\theta, n}(\cdot)$ are $\mathcal{C}^{m_{0}}([-\beta, \beta], \mathbb{C})$ functions
- $\lambda_{\theta}(0)=1, \lambda_{\theta}^{\prime}(0)=0, L_{\theta}(0)=0$ and $r_{\theta, n}(0)=0$.

Furthermore, there exists $\rho \in(0,1)$ such that for $\ell=0, \ldots, m_{0}$:

$$
G_{\ell}:=\sup _{|t| \leq \beta, \theta \in \Theta, n \geq 1}\left\{\rho^{-n}\left|r_{\theta, n}^{(\ell)}(t)\right|\right\}<\infty .
$$

The constants β, ρ, G_{ℓ}, and the following ones (for $\ell=0, \ldots, m_{0}$)

$$
E_{\ell}:=\sup _{|t| \leq \beta, \theta \in \Theta}\left|\lambda_{\theta}^{(\ell)}(t)\right|<\infty, \quad F_{\ell}:=\sup _{|t| \leq \beta, \theta \in \Theta}\left|L_{\theta}^{(\ell)}(t)\right|<\infty
$$

depend on ξ, but only through the constant C_{ξ} of Condition $D_{m_{0}}$.

Proposition

Suppose

- Assumption (M) holds true
- the functional ξ satisfies condition $\left(D_{1}\right)$ and is centered.

Then,
$\sup _{\theta \in \Theta} \sup _{n>1}\left|\mathbb{E}_{\theta, \mu}\left[S_{n}\left(\alpha_{0}\right)\right]\right|<\infty \quad$ and $\quad \forall \theta \in \Theta, \lim _{n} \mathbb{E}_{\theta, \mu}\left[S_{n}\left(\alpha_{0}\right) / n\right]=0$.

Proposition

Suppose

- Assumption (M) holds true
- the functional ξ satisfies condition $\left(D_{1}\right)$ and is centered.

Then,
$\sup _{\theta \in \Theta} \sup _{n \geq 1}\left|\mathbb{E}_{\theta, \mu}\left[S_{n}\left(\alpha_{0}\right)\right]\right|<\infty \quad$ and $\quad \forall \theta \in \Theta, \lim _{n} \mathbb{E}_{\theta, \mu}\left[S_{n}\left(\alpha_{0}\right) / n\right]=0$.
If in addition ξ satisfies condition $\left(D_{2}\right)$, then for each $\forall \theta \in \Theta$,

$$
\sigma^{2}(\theta):=\lim _{n} \frac{\mathbb{E}_{\theta, \mu}\left[S_{n}\left(\alpha_{0}\right)^{2}\right]}{n} \in \mathbb{R} \quad \text { is well defined. }
$$

Proposition

Suppose

- Assumption (M) holds true
- the functional ξ satisfies condition $\left(D_{1}\right)$ and is centered.

Then,
$\sup _{\theta \in \Theta} \sup _{n>1}\left|\mathbb{E}_{\theta, \mu}\left[S_{n}\left(\alpha_{0}\right)\right]\right|<\infty \quad$ and $\quad \forall \theta \in \Theta, \lim _{n} \mathbb{E}_{\theta, \mu}\left[S_{n}\left(\alpha_{0}\right) / n\right]=0$.
If in addition ξ satisfies condition $\left(D_{2}\right)$, then for each $\forall \theta \in \Theta$,

$$
\sigma^{2}(\theta):=\lim _{n} \frac{\mathbb{E}_{\theta, \mu}\left[S_{n}\left(\alpha_{0}\right)^{2}\right]}{n} \in \mathbb{R} \quad \text { is well defined. }
$$

Furthermore, the function $\sigma^{2}(\cdot)$ is bounded on Θ, and there exists a constant $C>0$ depending only on C_{ξ} and $\mu(V)$ such that

$$
\forall \theta \in \Theta, \forall n \geq 1,\left|n \sigma^{2}(\theta)-\mathbb{E}_{\theta, \mu}\left[S_{n}\left(\alpha_{0}\right)^{2}\right]\right| \leq C .
$$

Theorem

Assume that :

- condition (\mathcal{M}) holds true;
- the functional ξ is centered and satisfies condition $\left(D_{3}\right)$;
- $\sigma_{0}^{2}:=\inf _{\theta \in \Theta} \sigma^{2}(\theta)>0$.

Then there exists a constant $B(\xi)$ such that

$$
\forall n \geq 1, \quad \sup _{\theta \in \Theta} \sup _{u \in \mathbb{R}}\left|\mathbb{P}_{\theta, \mu}\left\{\frac{S_{n}\left(\alpha_{0}\right)}{\sigma(\theta) \sqrt{n}} \leq u\right\}-\Gamma(u)\right| \leq \frac{B(\xi)}{\sqrt{n}}
$$

Furthermore, the constant $B(\xi)$ depends on the functional ξ, but only through σ_{0} and the constant C_{ξ} of Condition $\left(D_{3}\right)$.

(1) Introduction

(2) A general method for deriving Berry-Esseen bounds for M-estimators
(3) A uniform Berry-Esseen statement with geometrically ergodic Markov chains

4 Application: Berry-Esseen bound for M-estimators with geometrically Markov chains
(5) Example of application: $\mathrm{AR}(1)$ with $\mathrm{ARCH}(1)$ errors

- Consider a Markov chain satisfying the condition (\mathcal{M}).
- Consider a Markov chain satisfying the condition (\mathcal{M}).
- Let

$$
M_{n}(\alpha)=\frac{1}{n} \sum_{k=1}^{n} F\left(\alpha, X_{k-1}, X_{k}\right)
$$

where $\alpha \in \mathcal{A} \subset \mathbb{R}$ is the parameter of interest, $F: \mathcal{A} \times E^{2} \rightarrow \mathbb{R}$.

- Consider a Markov chain satisfying the condition (\mathcal{M}).
- Let

$$
M_{n}(\alpha)=\frac{1}{n} \sum_{k=1}^{n} F\left(\alpha, X_{k-1}, X_{k}\right)
$$

where $\alpha \in \mathcal{A} \subset \mathbb{R}$ is the parameter of interest, $F: \mathcal{A} \times E^{2} \rightarrow \mathbb{R}$.

- Assume that F satisfies condition $\left(D_{1}\right)$ and let

$$
M_{\theta}(\alpha)=\lim _{n \rightarrow \infty} \mathbb{E}_{\theta, \mu}\left[M_{n}(\alpha)\right]=\mathbb{E}_{\theta, \pi_{\theta}}\left[F\left(\alpha, X_{0}, X_{1}\right)\right]
$$

- Consider a Markov chain satisfying the condition (\mathcal{M}).
- Let

$$
M_{n}(\alpha)=\frac{1}{n} \sum_{k=1}^{n} F\left(\alpha, X_{k-1}, X_{k}\right)
$$

where $\alpha \in \mathcal{A} \subset \mathbb{R}$ is the parameter of interest, $F: \mathcal{A} \times E^{2} \rightarrow \mathbb{R}$.

- Assume that F satisfies condition $\left(D_{1}\right)$ and let

$$
M_{\theta}(\alpha)=\lim _{n \rightarrow \infty} \mathbb{E}_{\theta, \mu}\left[M_{n}(\alpha)\right]=\mathbb{E}_{\theta, \pi_{\theta}}\left[F\left(\alpha, X_{0}, X_{1}\right)\right]
$$

- For each $\theta \in \Theta$ there exists a unique $\alpha_{0}=\alpha_{0}(\theta) \in \mathcal{A}$, the "true" value of the parameter of interest, such that

$$
M_{\theta}(\alpha)>M_{\theta}\left(\alpha_{0}\right), \quad \forall \alpha \neq \alpha_{0}
$$

- Consider a Markov chain satisfying the condition (\mathcal{M}).
- Let

$$
M_{n}(\alpha)=\frac{1}{n} \sum_{k=1}^{n} F\left(\alpha, X_{k-1}, X_{k}\right)
$$

where $\alpha \in \mathcal{A} \subset \mathbb{R}$ is the parameter of interest, $F: \mathcal{A} \times E^{2} \rightarrow \mathbb{R}$.

- Assume that F satisfies condition $\left(D_{1}\right)$ and let

$$
M_{\theta}(\alpha)=\lim _{n \rightarrow \infty} \mathbb{E}_{\theta, \mu}\left[M_{n}(\alpha)\right]=\mathbb{E}_{\theta, \pi_{\theta}}\left[F\left(\alpha, X_{0}, X_{1}\right)\right]
$$

- For each $\theta \in \Theta$ there exists a unique $\alpha_{0}=\alpha_{0}(\theta) \in \mathcal{A}$, the "true" value of the parameter of interest, such that

$$
M_{\theta}(\alpha)>M_{\theta}\left(\alpha_{0}\right), \quad \forall \alpha \neq \alpha_{0}
$$

- Consider a M-estimator $\widehat{\alpha}_{n}$, that is

$$
M_{n}\left(\widehat{\alpha}_{n}\right) \leq \min _{\alpha \in \mathcal{A}} M_{n}(\alpha)+c_{n},
$$

where $c_{n} \downarrow 0$.

- $\forall(x, y) \in E^{2}$, the map $\alpha \mapsto F(\alpha, x, y)$ is twice continuously differentiable on \mathcal{A}.
- $\forall(x, y) \in E^{2}$, the map $\alpha \mapsto F(\alpha, x, y)$ is twice continuously differentiable on \mathcal{A}.
- Let $F^{\prime}(\cdot, \cdot, \cdot)$ and $F^{\prime \prime}(\cdot, \cdot, \cdot)$ be the first and second order partial derivatives w.r.t. α.
- $\forall(x, y) \in E^{2}$, the map $\alpha \mapsto F(\alpha, x, y)$ is twice continuously differentiable on \mathcal{A}.
- Let $F^{\prime}(\cdot, \cdot, \cdot)$ and $F^{\prime \prime}(\cdot, \cdot, \cdot)$ be the first and second order partial derivatives w.r.t. α.
- Let

$$
M_{n}^{\prime}(\alpha)=\frac{1}{n} \sum_{k=1}^{n} F^{\prime}\left(\alpha, X_{k-1}, X_{k}\right), \quad M_{n}^{\prime \prime}(\alpha)=\frac{1}{n} \sum_{k=1}^{n} F^{\prime \prime}\left(\alpha, X_{k-1}, X_{k}\right)
$$

Assumptions (1/2)

We impose sufficient conditions guaranteeing assumptions (A1)-(A6) (V0) F^{\prime} and $F^{\prime \prime}$ satisfy Condition $\left(D_{3}\right)$;

Assumptions (1/2)

We impose sufficient conditions guaranteeing assumptions (A1)-(A6)
(V0) F^{\prime} and $F^{\prime \prime}$ satisfy Condition $\left(D_{3}\right)$;
(V1) $\forall \theta \in \Theta, \mathbb{E}_{\theta, \pi_{\theta}}\left[F^{\prime}\left(\alpha_{0}, X_{0}, X_{1}\right)\right]=0$ and $\alpha_{0}=\alpha_{0}(\theta)$ is unique with this property;

Assumptions (1/2)

We impose sufficient conditions guaranteeing assumptions (A1)-(A6)
(V0) F^{\prime} and $F^{\prime \prime}$ satisfy Condition $\left(D_{3}\right)$;
(V1) $\forall \theta \in \Theta, \mathbb{E}_{\theta, \pi_{\theta}}\left[F^{\prime}\left(\alpha_{0}, X_{0}, X_{1}\right)\right]=0$ and $\alpha_{0}=\alpha_{0}(\theta)$ is unique with this property;
(V2) $m(\theta):=\mathbb{E}_{\theta, \pi_{\theta}}\left[F^{\prime \prime}\left(\alpha_{0}, X_{0}, X_{1}\right)\right]$ satisfies $\inf _{\theta \in \Theta} m(\theta)>0$;

Assumptions (1/2)

We impose sufficient conditions guaranteeing assumptions (A1)-(A6)
(VO) F^{\prime} and $F^{\prime \prime}$ satisfy Condition $\left(D_{3}\right)$;
(V1) $\forall \theta \in \Theta, \mathbb{E}_{\theta, \pi_{\theta}}\left[F^{\prime}\left(\alpha_{0}, X_{0}, X_{1}\right)\right]=0$ and $\alpha_{0}=\alpha_{0}(\theta)$ is unique with this property;
(V2) $m(\theta):=\mathbb{E}_{\theta, \pi_{\theta}}\left[F^{\prime \prime}\left(\alpha_{0}, X_{0}, X_{1}\right)\right]$ satisfies $\inf _{\theta \in \Theta} m(\theta)>0$;
(V3) $M_{n}^{\prime}\left(\widehat{\alpha}_{n}\right)$ satisfies (A3), that is $\forall n \geq 1 \exists r_{n}>0$ independent of θ such that $\sqrt{n} r_{n} \rightarrow 0$ and $\sup _{\theta \in \Theta} \mathbb{P}_{\theta}\left(\left|M_{n}^{\prime}\left(\widehat{\alpha}_{n}\right)\right| \geq r_{n}\right)=O\left(n^{-1 / 2}\right)$.

Assumptions (1/2)

We impose sufficient conditions guaranteeing assumptions (A1)-(A6)
(V0) F^{\prime} and $F^{\prime \prime}$ satisfy Condition $\left(D_{3}\right)$;
(V1) $\forall \theta \in \Theta, \mathbb{E}_{\theta, \pi_{\theta}}\left[F^{\prime}\left(\alpha_{0}, X_{0}, X_{1}\right)\right]=0$ and $\alpha_{0}=\alpha_{0}(\theta)$ is unique with this property;
(V2) $m(\theta):=\mathbb{E}_{\theta, \pi_{\theta}}\left[F^{\prime \prime}\left(\alpha_{0}, X_{0}, X_{1}\right)\right]$ satisfies $\inf _{\theta \in \Theta} m(\theta)>0$;
(V3) $M_{n}^{\prime}\left(\widehat{\alpha}_{n}\right)$ satisfies (A3), that is $\forall n \geq 1 \exists r_{n}>0$ independent of θ such that $\sqrt{n} r_{n} \rightarrow 0$ and $\sup _{\theta \in \Theta} \mathbb{P}_{\theta}\left(\left|M_{n}^{\prime}\left(\widehat{\alpha}_{n}\right)\right| \geq r_{n}\right)=O\left(n^{-1 / 2}\right)$.

Define the asymptotic variances:

$$
\begin{aligned}
\sigma_{1}^{2}(\theta) & :=\lim _{n} \frac{1}{n} \mathbb{E}_{\theta, \mu}\left[\left(\sum_{k=1}^{n} F^{\prime}\left(\alpha_{0}, X_{k-1}, X_{k}\right)\right)^{2}\right] \\
\sigma_{2}^{2}(\theta) & :=\lim _{n} \frac{1}{n} \mathbb{E}_{\theta, \mu}\left[\left(\sum_{k=1}^{n} F^{\prime \prime}\left(\alpha_{0}, X_{k-1}, X_{k}\right)-n m(\theta)\right)^{2}\right] .
\end{aligned}
$$

Assumptions (1/2)

We impose sufficient conditions guaranteeing assumptions (A1)-(A6)
(V0) F^{\prime} and $F^{\prime \prime}$ satisfy Condition $\left(D_{3}\right)$;
(V1) $\forall \theta \in \Theta, \mathbb{E}_{\theta, \pi_{\theta}}\left[F^{\prime}\left(\alpha_{0}, X_{0}, X_{1}\right)\right]=0$ and $\alpha_{0}=\alpha_{0}(\theta)$ is unique with this property;
(V2) $m(\theta):=\mathbb{E}_{\theta, \pi_{\theta}}\left[F^{\prime \prime}\left(\alpha_{0}, X_{0}, X_{1}\right)\right]$ satisfies $\inf _{\theta \in \Theta} m(\theta)>0$;
(V3) $M_{n}^{\prime}\left(\widehat{\alpha}_{n}\right)$ satisfies (A3), that is $\forall n \geq 1 \exists r_{n}>0$ independent of θ such that $\sqrt{n} r_{n} \rightarrow 0$ and $\sup _{\theta \in \Theta} \mathbb{P}_{\theta}\left(\left|M_{n}^{\prime}\left(\widehat{\alpha}_{n}\right)\right| \geq r_{n}\right)=O\left(n^{-1 / 2}\right)$.

Define the asymptotic variances:

$$
\begin{aligned}
\sigma_{1}^{2}(\theta) & :=\lim _{n} \frac{1}{n} \mathbb{E}_{\theta, \mu}\left[\left(\sum_{k=1}^{n} F^{\prime}\left(\alpha_{0}, X_{k-1}, X_{k}\right)\right)^{2}\right] \\
\sigma_{2}^{2}(\theta) & :=\lim _{n} \frac{1}{n} \mathbb{E}_{\theta, \mu}\left[\left(\sum_{k=1}^{n} F^{\prime \prime}\left(\alpha_{0}, X_{k-1}, X_{k}\right)-n m(\theta)\right)^{2}\right] .
\end{aligned}
$$

Condition (V0) and Proposition 1 ensure $\sup _{\theta \in \Theta} \sigma_{j}(\theta)<\infty$ for $j=1,2$.

Assumptions (2/2)

The following conditions are also assumed to hold
$(\mathrm{V} 4) \inf _{\theta \in \Theta} \sigma_{j}(\theta)>0$ for $j=1,2$.

Assumptions (2/2)

The following conditions are also assumed to hold
(V4) $\inf _{\theta \in \Theta} \sigma_{j}(\theta)>0$ for $j=1,2$.
(V5) There exist $\eta \in(0,1 / 2)$ and $C>0$ such that

$$
\forall\left(\alpha, \alpha^{\prime}\right) \in \mathcal{A}^{2}, \forall(x, y) \in E^{2},
$$

$$
\left|F^{\prime \prime}(\alpha, x, y)-F^{\prime \prime}\left(\alpha^{\prime}, x, y\right)\right| \leq C\left|\alpha-\alpha^{\prime}\right|(V(x)+V(y))^{\eta} .
$$

Assumptions (2/2)

The following conditions are also assumed to hold
(V4) $\inf _{\theta \in \Theta} \sigma_{j}(\theta)>0$ for $j=1,2$.
(V5) There exist $\eta \in(0,1 / 2)$ and $C>0$ such that $\forall\left(\alpha, \alpha^{\prime}\right) \in \mathcal{A}^{2}, \forall(x, y) \in E^{2}$,

$$
\left|F^{\prime \prime}(\alpha, x, y)-F^{\prime \prime}\left(\alpha^{\prime}, x, y\right)\right| \leq C\left|\alpha-\alpha^{\prime}\right|(V(x)+V(y))^{\eta} .
$$

(V6) there exists a sequence $\gamma_{n} \rightarrow 0$ such that

$$
\sup _{\theta \in \Theta} \mathbb{P}_{\theta}\left\{\left|\widehat{\alpha}_{n}-\alpha_{0}\right| \geq d\right\} \leq \gamma_{n},
$$

with $d=\inf _{\theta \in \Theta} m(\theta) / 8 \pi_{\theta}\left(V^{\eta}\right)$ and η defined in (V5).

Theorem

Assume that the condition (\mathcal{M}) holds true, that F satisfies condition $\left(D_{1}\right)$, that conditions (V0) to (V6) are fulfilled. Let $\tau(\theta):=\sigma_{1}(\theta) / m(\theta)$. Then there exists a positive constant C such that $\forall n \geq 1$,

$$
\sup _{\theta \in \Theta} \sup _{u \in \mathbb{R}}\left|\mathbb{P}_{\theta, \mu}\left\{\frac{\sqrt{n}}{\tau(\theta)}\left(\widehat{\alpha}_{n}-\alpha_{0}\right) \leq u\right\}-\Gamma(u)\right| \leq C\left(\frac{1}{\sqrt{n}}+\sqrt{n} r_{n}+\gamma_{n}\right)
$$

(1) Introduction

(2) A general method for deriving Berry-Esseen bounds for M-estimators
(3) A uniform Berry-Esseen statement with geometrically ergodic Markov chains
4. Application: Berry-Esseen bound for M-estimators with geometrically Markov chains
(5) Example of application: $\mathrm{AR}(1)$ with $\mathrm{ARCH}(1)$ errors

Estimation of the autoregressive coefficient ρ_{0}

- Condition (\mathcal{M}) holds for $V(x)=(1+|x|)^{p}$ with $p>6$

Estimation of the autoregressive coefficient ρ_{0}

- Condition (\mathcal{M}) holds for $V(x)=(1+|x|)^{p}$ with $p>6$
- $F\left(\rho, X_{k-1}, X_{k}\right)=\left(X_{k}-\rho X_{k-1}\right)^{2}$

Estimation of the autoregressive coefficient ρ_{0}

- Condition (\mathcal{M}) holds for $V(x)=(1+|x|)^{p}$ with $p>6$
- $F\left(\rho, X_{k-1}, X_{k}\right)=\left(X_{k}-\rho X_{k-1}\right)^{2}$
- $F^{\prime}\left(\rho, X_{k-1}, X_{k}\right)=-2 X_{k-1}\left(X_{k}-\rho X_{k-1}\right)$
$F^{\prime \prime}\left(\rho, X_{k-1}, X_{k}\right)=2 X_{k-1}^{2}$.

Estimation of the autoregressive coefficient ρ_{0}

- Condition (\mathcal{M}) holds for $V(x)=(1+|x|)^{p}$ with $p>6$
- $F\left(\rho, X_{k-1}, X_{k}\right)=\left(X_{k}-\rho X_{k-1}\right)^{2}$
- $F^{\prime}\left(\rho, X_{k-1}, X_{k}\right)=-2 X_{k-1}\left(X_{k}-\rho X_{k-1}\right)$
$F^{\prime \prime}\left(\rho, X_{k-1}, X_{k}\right)=2 X_{k-1}^{2}$.
- By our results, there exists a positive constant C such that
$\forall n \geq 1, \quad \sup _{\theta \in \Theta} \sup _{u \in \mathbb{R}}\left|\mathbb{P}_{\theta, \delta_{0}}\left\{\frac{\sqrt{n}}{\sigma_{1}(\theta) m(\theta)^{-1}}\left(\widehat{\rho}_{n}-\rho_{0}\right) \leq u\right\}-\Gamma(u)\right| \leq \frac{C}{\sqrt{n}}$.

Estimation of the conditional variance coefficient γ_{0}

- Condition (\mathcal{M}) holds for $V(x)=(1+|x|)^{p}$ with $p>12$

Estimation of the conditional variance coefficient γ_{0}

- Condition (\mathcal{M}) holds for $V(x)=(1+|x|)^{p}$ with $p>12$
- Define

$$
Q_{n}(\gamma ; r, v)=\frac{1}{n} \sum_{k=1}^{n} \eta_{k}^{2}(\gamma, r, v)
$$

where

$$
\eta_{k}(\gamma, r, v)=\left(X_{k}-r X_{k-1}\right)^{2}-v\left(1-r^{2}-\gamma\right)-\gamma X_{k-1}^{2}
$$

Estimation of the conditional variance coefficient γ_{0}

- Condition (\mathcal{M}) holds for $V(x)=(1+|x|)^{p}$ with $p>12$
- Define

$$
Q_{n}(\gamma ; r, v)=\frac{1}{n} \sum_{k=1}^{n} \eta_{k}^{2}(\gamma, r, v)
$$

where

$$
\eta_{k}(\gamma, r, v)=\left(X_{k}-r X_{k-1}\right)^{2}-v\left(1-r^{2}-\gamma\right)-\gamma X_{k-1}^{2}
$$

- Let $M_{n}(\gamma)=Q_{n}\left(\gamma ; \widehat{\rho}_{n}, \widehat{\tau}_{n}^{2}\right)$, where $\widehat{\tau}_{n}^{2}=n^{-1} \sum_{k=1}^{n} X_{k}^{2}$.

Estimation of the conditional variance coefficient γ_{0}

- Condition (\mathcal{M}) holds for $V(x)=(1+|x|)^{p}$ with $p>12$
- Define

$$
Q_{n}(\gamma ; r, v)=\frac{1}{n} \sum_{k=1}^{n} \eta_{k}^{2}(\gamma, r, v)
$$

where

$$
\eta_{k}(\gamma, r, v)=\left(X_{k}-r X_{k-1}\right)^{2}-v\left(1-r^{2}-\gamma\right)-\gamma X_{k-1}^{2}
$$

- Let $M_{n}(\gamma)=Q_{n}\left(\gamma ; \widehat{\rho}_{n}, \widehat{\tau}_{n}^{2}\right)$, where $\widehat{\tau}_{n}^{2}=n^{-1} \sum_{k=1}^{n} X_{k}^{2}$.
- Define $\widehat{\gamma}_{n}=\arg \min _{\gamma \in\left[m_{\gamma}, M_{\gamma}\right]} M_{n}(\gamma)$

Estimation of the coefficient γ_{0} cont'd

- Define
- $F^{\prime}\left(\gamma, X_{k-1}, X_{k}\right)=2\left(\tau_{0}^{2}-X_{k-1}^{2}\right) \eta_{k}\left(\gamma, \rho_{0}, \tau_{0}^{2}\right)$
- $F^{\prime \prime}\left(\gamma, X_{k-1}, X_{k}\right)=2\left(\tau_{0}^{2}-X_{k-1}^{2}\right)^{2}$
- $M_{n}^{\prime}(\gamma)=\partial Q_{n} / \partial \gamma\left(\gamma ; \rho_{0}, \tau_{0}^{2}\right)$
- $M_{n}^{\prime \prime}(\gamma)=\partial^{2} Q_{n} / \partial \gamma^{2}\left(\gamma ; \rho_{0}, \tau_{0}^{2}\right)$.

Estimation of the coefficient γ_{0} cont'd

- Define
- $F^{\prime}\left(\gamma, X_{k-1}, X_{k}\right)=2\left(\tau_{0}^{2}-X_{k-1}^{2}\right) \eta_{k}\left(\gamma, \rho_{0}, \tau_{0}^{2}\right)$
- $F^{\prime \prime}\left(\gamma, X_{k-1}, X_{k}\right)=2\left(\tau_{0}^{2}-X_{k-1}^{2}\right)^{2}$
- $M_{n}^{\prime}(\gamma)=\partial Q_{n} / \partial \gamma\left(\gamma ; \rho_{0}, \tau_{0}^{2}\right)$
- $M_{n}^{\prime \prime}(\gamma)=\partial^{2} Q_{n} / \partial \gamma^{2}\left(\gamma ; \rho_{0}, \tau_{0}^{2}\right)$.
- Check condition (V3) with $r_{n}=n^{-1} \log n$ and deduce that for some suitable $\tau(\theta)$
$\forall n \geq 1, \quad \sup _{\theta \in \Theta} \sup _{u \in \mathbb{R}}\left|\mathbb{P}_{\theta, \delta_{0}}\left\{\frac{\sqrt{n}}{\tau(\theta)}\left(\widehat{\gamma}_{n}-\gamma_{0}\right) \leq u\right\}-\Gamma(u)\right|=O\left(\frac{\log n}{\sqrt{n}}\right)$.

Estimation of the coefficient γ_{0} cont'd

- Define
- $F^{\prime}\left(\gamma, X_{k-1}, X_{k}\right)=2\left(\tau_{0}^{2}-X_{k-1}^{2}\right) \eta_{k}\left(\gamma, \rho_{0}, \tau_{0}^{2}\right)$
- $F^{\prime \prime}\left(\gamma, X_{k-1}, X_{k}\right)=2\left(\tau_{0}^{2}-X_{k-1}^{2}\right)^{2}$
- $M_{n}^{\prime}(\gamma)=\partial Q_{n} / \partial \gamma\left(\gamma ; \rho_{0}, \tau_{0}^{2}\right)$
- $M_{n}^{\prime \prime}(\gamma)=\partial^{2} Q_{n} / \partial \gamma^{2}\left(\gamma ; \rho_{0}, \tau_{0}^{2}\right)$.
- Check condition (V3) with $r_{n}=n^{-1} \log n$ and deduce that for some suitable $\tau(\theta)$
$\forall n \geq 1, \quad \sup _{\theta \in \Theta} \sup _{u \in \mathbb{R}}\left|\mathbb{P}_{\theta, \delta_{0}}\left\{\frac{\sqrt{n}}{\tau(\theta)}\left(\widehat{\gamma}_{n}-\gamma_{0}\right) \leq u\right\}-\Gamma(u)\right|=O\left(\frac{\log n}{\sqrt{n}}\right)$.
- The $\log n$ factor could be probably improved - open question...

